A Gⁿ rational spline

Introduction

Spline formulation

A G^n rational spline with an algebraic distance field

Ágoston Sipos

Budapest University of Technology and Economics

WAIT 2020

Introduction

Spline formulatio

Results

2 Spline formulation

Contents

Sipos

A Gⁿ rational

spline Ágoston

Spline formulation

Results

1 Introduction

2 Spline formulation

3 Results

4/14

Implicit surfaces

y
$$F(x, y) > 0$$

 $F(x, y) < 0$
 $F(x, y) = 0$

Introduction

 $A G^n$ rational

spline Ágoston Sipos

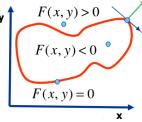
 $f: \mathbb{R}^3 \to \mathbb{R}$

scalar function

$$\{\mathbf{p}\in\mathbb{R}^3:f(p)=0\}$$

implicit surface

Means a space partitioning to "inside" and "outside" which define a separating surface.



I-Patch

spline Ágoston Sipos

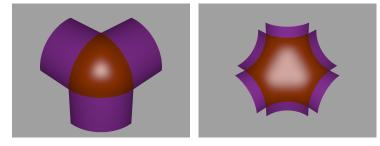
A Gⁿ rational

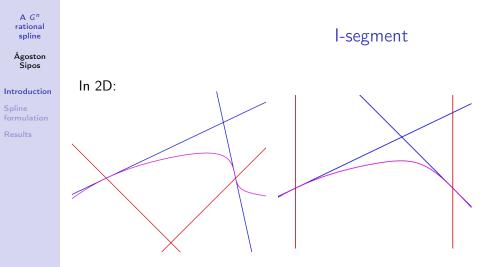
Introduction

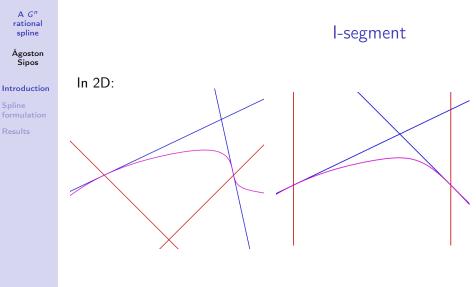
Spline formulation

- *P_i*, *i* = 1..*n implicit* primary surfaces, *B_i*, *i* = 1..*n implicit* bounding surfaces
- Surfaces with the same index together represent a side of the patch

•
$$I = \sum_{i=1}^{n} (w_i P_i \prod_{j \neq i} B_j^{k+1}) + w \prod_{i=1}^{n} B_i^{k+1}, w_i, w \in \mathbb{R}$$
(kth order continuity)







General configuration

Parallel configuration

Ágoston Sipos

Introduction

Spline formulation

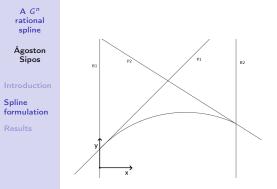
Results

1 Introduction

2 Spline formulation

3 Results

Contents



Parameterization

Use this 2D (x-y) coordinate system.

If P_1 and P_2 are graphs of functions, then the curve can be written as a function of x (rational polynomial). Proof in paper (c.a. 2 lines)

$$y = \frac{\sum_{n=1}^{2} (w_n f_n(x)(x - x_{3-n})^2) - w_c(x - x_1)^2 (x - x_2)^2}{\sum_{n=1}^{2} (w_n (x - x_{3-n})^2)}$$

Splines

spline Ágoston Sipos

A Gⁿ rational

Introduction

Spline formulation

Results

What we have is:

- *kth* order continuity to given functions
- 3 free parameters to control shape
- Explicit rational and implicit polynomial forms (can always use the more suitable)

Splines

Ágoston Sipos

A Gⁿ

spline

Introduction

Spline formulation

Results

What we have is:

- *kth* order continuity to given functions
- 3 free parameters to control shape
- Explicit rational and implicit polynomial forms (can always use the more suitable)

We can construct spline functions from these!

• Prescribe the values and derivatives in given points and create the *P_i*s from them

Ágoston Sipos

Introduction

Spline formulatio

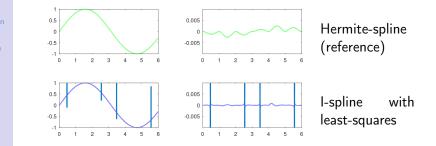
Results

1 Introduction

2 Spline formulation

Contents

Approximation



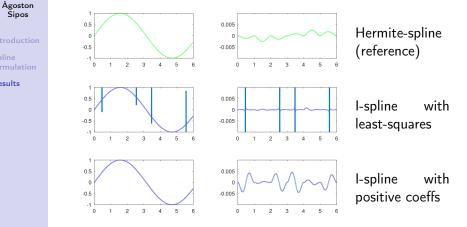
A Gⁿ rational

spline Ágoston Sipos

Results

• Direct approximation can lead to singular results

Approximation



· Careful setting of coefficients is needed

 $A G^n$ rational

spline

Šipos

Results

Approximation

Introduction

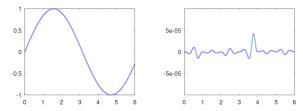
A Gⁿ rational

spline Ágoston Sipos

Spline formulatior

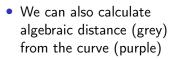
Results

Second-order version:

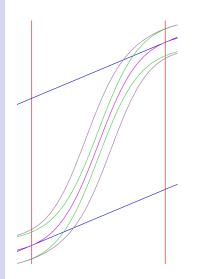


Note: error scale is much lower

Distance fields



• More accurate than value difference (green)



A Gⁿ rational

spline Ágoston Sipos

Results

Summary

Introduction

A Gⁿ rational

spline Ágoston Sipos

Spline formulatior

Results

- A spline basis with relatively low degree
- Can calculate algebraic error of points

Thank you for your attention!